Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dual-Function Radiating Glass for Antennas and Light Covers: Part I: Omnidirectional Glass Dielectric Resonator Antennas

Identifieur interne : 000F23 ( Main/Repository ); précédent : 000F22; suivant : 000F24

Dual-Function Radiating Glass for Antennas and Light Covers: Part I: Omnidirectional Glass Dielectric Resonator Antennas

Auteurs : RBID : Pascal:13-0098884

Descripteurs français

English descriptors

Abstract

The dual-function glass dielectric resonator antenna (DRA) that simultaneously serves as a light cover is investigated for the first time. This paper is the first part, which demonstrates the idea using omnidirectional hollow rectangular glass DRAs. Both linearly polarized (LP) and circularly polarized (CP) designs are given. The glass DRA can generate CP fields by adding metallic patches onto its side walls, with a 3-dB axial ratio bandwidth of ∼ 7%. To obtain an entirely light-transmissible CP glass DRA, conducting indium tin oxide (ITO) patches are used in place of the metallic patches. For each of the LP and CP designs, powered light emitting diodes (LEDs) are placed inside the hollow region of the glass DRA to serve as the light source. It is shown that practically the lighting and antenna parts do not interfere with each other. The reflection coefficient, axial ratio (CP designs only), radiation patterns, and antenna gains of the proposed LP and CP antennas are studied, and good agreement between measured and simulated results is observed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0098884

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dual-Function Radiating Glass for Antennas and Light Covers: Part I: Omnidirectional Glass Dielectric Resonator Antennas</title>
<author>
<name sortKey="Leung, Kwok W" uniqKey="Leung K">Kwok W. Leung</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Millimeter Waves and Department of Electronic Engineering, City University of Hong Kong</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pan, Yong M" uniqKey="Pan Y">Yong M. Pan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Millimeter Waves and Department of Electronic Engineering, City University of Hong Kong</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fang, Xiao S" uniqKey="Fang X">Xiao S. Fang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Millimeter Waves and Department of Electronic Engineering, City University of Hong Kong</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lim, Eng H" uniqKey="Lim E">Eng H. Lim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Faculty of Engineering and Science, Universiti Tunku Abdul Rahman</s1>
<s2>53300 Setapak, Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>53300 Setapak, Kuala Lumpur</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luk, Kwai Man" uniqKey="Luk K">Kwai-Man Luk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Millimeter Waves and Department of Electronic Engineering, City University of Hong Kong</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chan, Hau P" uniqKey="Chan H">Hau P. Chan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Optoelectronics Laboratory, Department of Electronic Engineering, City University of Hong Kong</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0098884</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0098884 INIST</idno>
<idno type="RBID">Pascal:13-0098884</idno>
<idno type="wicri:Area/Main/Corpus">001212</idno>
<idno type="wicri:Area/Main/Repository">000F23</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-926X</idno>
<title level="j" type="abbreviated">IEEE trans. antennas propag.</title>
<title level="j" type="main">IEEE transactions on antennas and propagation</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antenna gain</term>
<term>Axial ratio</term>
<term>Circular polarization</term>
<term>Dielectric resonator antennas</term>
<term>Light emitting diode</term>
<term>Light source</term>
<term>Non directive antenna</term>
<term>Radiation pattern</term>
<term>Rectilinear polarization</term>
<term>Reflectance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Antenne résonateur diélectrique</term>
<term>Polarisation circulaire</term>
<term>Rapport axial</term>
<term>Diode électroluminescente</term>
<term>Source lumineuse</term>
<term>Facteur réflexion</term>
<term>Diagramme rayonnement</term>
<term>Gain antenne</term>
<term>Polarisation rectiligne</term>
<term>Antenne omnidirectionnelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The dual-function glass dielectric resonator antenna (DRA) that simultaneously serves as a light cover is investigated for the first time. This paper is the first part, which demonstrates the idea using omnidirectional hollow rectangular glass DRAs. Both linearly polarized (LP) and circularly polarized (CP) designs are given. The glass DRA can generate CP fields by adding metallic patches onto its side walls, with a 3-dB axial ratio bandwidth of ∼ 7%. To obtain an entirely light-transmissible CP glass DRA, conducting indium tin oxide (ITO) patches are used in place of the metallic patches. For each of the LP and CP designs, powered light emitting diodes (LEDs) are placed inside the hollow region of the glass DRA to serve as the light source. It is shown that practically the lighting and antenna parts do not interfere with each other. The reflection coefficient, axial ratio (CP designs only), radiation patterns, and antenna gains of the proposed LP and CP antennas are studied, and good agreement between measured and simulated results is observed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-926X</s0>
</fA01>
<fA02 i1="01">
<s0>IETPAK</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. antennas propag.</s0>
</fA03>
<fA05>
<s2>61</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dual-Function Radiating Glass for Antennas and Light Covers: Part I: Omnidirectional Glass Dielectric Resonator Antennas</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEUNG (Kwok W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PAN (Yong M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FANG (Xiao S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIM (Eng H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LUK (Kwai-Man)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHAN (Hau P.)</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Millimeter Waves and Department of Electronic Engineering, City University of Hong Kong</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculty of Engineering and Science, Universiti Tunku Abdul Rahman</s1>
<s2>53300 Setapak, Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Optoelectronics Laboratory, Department of Electronic Engineering, City University of Hong Kong</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>578-586</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222E2</s2>
<s5>354000506293370110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0098884</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on antennas and propagation</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The dual-function glass dielectric resonator antenna (DRA) that simultaneously serves as a light cover is investigated for the first time. This paper is the first part, which demonstrates the idea using omnidirectional hollow rectangular glass DRAs. Both linearly polarized (LP) and circularly polarized (CP) designs are given. The glass DRA can generate CP fields by adding metallic patches onto its side walls, with a 3-dB axial ratio bandwidth of ∼ 7%. To obtain an entirely light-transmissible CP glass DRA, conducting indium tin oxide (ITO) patches are used in place of the metallic patches. For each of the LP and CP designs, powered light emitting diodes (LEDs) are placed inside the hollow region of the glass DRA to serve as the light source. It is shown that practically the lighting and antenna parts do not interfere with each other. The reflection coefficient, axial ratio (CP designs only), radiation patterns, and antenna gains of the proposed LP and CP antennas are studied, and good agreement between measured and simulated results is observed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D04B04D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Antenne résonateur diélectrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Dielectric resonator antennas</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polarisation circulaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Circular polarization</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polarización circular</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Rapport axial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Axial ratio</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Source lumineuse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Light source</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fuente luminosa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Facteur réflexion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Reflectance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Coeficiente reflexión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Diagramme rayonnement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Radiation pattern</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Diagrama radiación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Gain antenne</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Antenna gain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ganancia antena</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Polarisation rectiligne</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Rectilinear polarization</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Polarización rectilínea</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Antenne omnidirectionnelle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Non directive antenna</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Antena omnidireccional</s0>
<s5>10</s5>
</fC03>
<fN21>
<s1>070</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0098884
   |texte=   Dual-Function Radiating Glass for Antennas and Light Covers: Part I: Omnidirectional Glass Dielectric Resonator Antennas
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024